Quality Education Fund The Dedicated Funding Programme for Publicly-funded Schools Part B: Project Proposal

Project Title: Interdisciplinary STEM project-based learning in synthetic biology	Project Number:
	2019/0725
吃字件 SIEM 我月的项目住字自任口版土彻字 	(Revised)

Name of School: <u>G.T. (Ellen Yeung) College</u>

Direct Beneficiaries

(a) Sector: Kindergarten Primary Secondary Special School (Please put a tick in the appropriate box(es).)

(b) Beneficiaries: (1) Students: 410 <u>G7 – G11</u>; (2) Teachers: <u>8</u>

Project Period: <u>10/2021</u> to <u>09/2024</u>

1. Project Needs

1.1	Project Aim(s)	The goal of this project is to enhance STEM education by developing a school- based STEM programme in the field of synthetic biology integrated with new technological advances for interdisciplinary project-based learning. Synthetic biology provides students an engineering context to learn molecular biology, genetic engineering, technology, computer science as well as bioinformatics. It encompasses the design and engineering of new biological parts or systems by assembly of interchangeable biological parts to address current and future challenges. Thus, synthetic biology serves as an ideal platform to engage in STEM and interdisciplinary education. The programme develops students' conceptual understanding and skills in the field of synthetic biology and engage students in interdisciplinary inquires to solve problems focusing on real world issues. The integration of STEM project-based learning in synthetic biology will enhance student interest, creativity and motivation which foster their perspectives and career aspirations in STEM.
1.2	Innovative	Our school has a school-based pull-out programme of biotechnology for G8 to
	element(s)	G10 students since 2012 and the domain has been extended to synthetic biology since 2017. The program aims to arouse and sustain student interest in the field of genetic engineering and synthetic biology, strengthen STEM knowledges and skills by expose them to lectures with the advanced level of academic contents, various hands-on techniques in molecular biology and provide them with diverse learning experiences such as participating lab visits, workshops and science talks at universities to learn of the recent advances in science and technology. To transform the learning experiences into real life learning, 11 G8 to G10 students in the program joined as a team to participate in the International Genetically Engineered Machine (iGEM) competition, the largest synthetic biology competition in the world in 2019. Through two years of advanced level lectures in synthetic biology, various hands-on experiences and learning activities, scientific research experience at university lab and public engagement activities related to an authentic and complex challenge to solve plastic pollution problem, students not only be able to apply multiple disciplines to solve real-world problems which cultivates their curiosity, critical thinking and problem-solving skills but also being instilled with the core value

of integrity, collaboration, respect, effort and excellence which are the generic skills that prepare students for a complex life and work environment in the 21st century. Therefore, such school-based curriculum integrated with project-based learning has been shown to be effective for building STEM literacy and bringing great benefits to students. With reference to the good learning outcome of this school-based pull-out programme through advanced learning and research experience, a STEM project-based learning programme in the field of synthetic biology will be developed. The ultimate goals of the proposed programme are (1) to inspire students and sustain their interests in STEMrelated field for further study and career aspiration, (2) to enhance students' creativity, innovation, high-order thinking, problem solving and collaboration which are essential for life-long learning through the STEM project-based learning environment, (3) to promote STEM education in Hong Kong secondary schools, (4) to enhance professional capacity of teachers by exposure to cutting edge development in science and technology and to empower teachers' capacities in design and implement of a new programme.

To fulfil the ultimate goals, the specific objectives of the program are

(1) to design and implement an interdisciplinary STEM programme to prepare students to build knowledge and skills in the field of synthetic biology and to work in an interdisciplinary research environment.

(2) to equip school laboratory with facilities and equipments necessary for students to have the capability to work on authentic research that is integrated within the curriculum and at the cutting edge of technology.

(3) to evaluate the effectiveness of the programme for sustainable development of STEM education.

(4) to disseminate the teaching resources and share experiences to other schools.

Integration of Project-Based Learning in STEM Curriculum via Synthetic Biology

Students in this generation are lived in technology and media embedded surrounding, they have access to Information and Communication Technology (ICT) which enable them to share, receive and collect information. To adapt to knowledge-based society, students need to have proficiency in 21st century skills, including problem solving, critical thinking, innovative thinking, collaboration and communication. In addition, they are required to have information literacy, media literacy and ICT literacy.

A major objective of education is to keep pace and align with advancement in knowledge and skills to be successful. Traditional methods of teaching are teacher centered with less emphasis on connection between real world and subject matter. Project-based learning (PBL) is an instructional and curricular learner-centered approach that empowers learners to conduct research, integrate theory and practice, and apply knowledge and skills to develop a viable solution to a defined problem¹. This type of instructional approach emphasizes activities that are interdisciplinary, authenticity in real world and student-centered. PBL was found to be more effective teaching technique for teaching science at elementary level².

Our STEM programme is specialized in the field of synthetic biology because it interfaces biology with engineering, technology, and computer science which serves as a platform for interdisciplinary STEM education. It combines

different science know-hows with engineering techniques in order to design and create novel biological systems and bio-factories to address current and future challenges. For example, one of the applications of synthetic biology is the creation of bioengineered microbes. Bioengineered microbes may be used to degrade pollutants, produce pharmaceuticals and proteins, make biosensors for detection and improve biofuel production. Given a board application prospect in the field of agriculture, bioplastics, chemical synthesis, environment, energy and medicine, synthetic biology is the emerging field which will be one of the fastest growing industries for years to come. According to a report by Global Market Insight, titled "Synthetic Biology Market Size by Products", the global synthetic biology market is forecast to reach \$11 billion by 2018 and is expected to reach US\$ 55 billion by 2025. The compound annual growth rate is estimated to be 24% during the forecast period from 2018 to 2025³. In addition, the industry has attracted investments from various business leaders. For instance, Hong Kong University of Science and Technology has received HK\$500 million donation in 2019, from Hong Kong real-estate tycoon Mr. Li Ka-Shing to launch a state-of-the-art institute for synthetic biology research. To ensure that Hong Kong have the needed world-class talent pool to catch the synthetic biology wave, creative educational methodologies shall be adopted to provide opportunities to train and to attract the interest of students - the potential next generation of synthetic biologists.

Interdisciplinary STEM Curriculum in Synthetic Biology

The first phase of the programme is to design and implement an interdisciplinary curriculum to prepare students to build and strengthen knowledge and skills in the field of synthetic biology and to work in an interdisciplinary research environment. Synthetic biology involves multiple disciplines including molecular biology, genetic engineering, bioinformatics and computational modeling which are highly interconnected. The new STEM curriculum encompasses four modules:

Module 1: Synthetic Biology

This module is a discovery module that provides an overview of fundamental knowledge of synthetic biology and hands-on experience of basic molecular biology techniques. Students will learn the synthetic biology theory and innovations and its underlying molecular biology principles including central dogma of molecular biology, principles and applications of common techniques in molecular biology such as molecular cloning, gel electrophoresis and polymerase chain reaction through interactive lectures and hands-on experiments.

Module 2: Genetic Engineering

This module is an investigative module that provides students with research experiences in genetic engineering that are less likely possible in the school laboratory settings. Students will learn how to apply their understanding of molecular biology to manipulate specific genes to engineer new biological parts or systems. They will also learn the applications of genetic engineering to see how scientists and engineers have used this practice to address real-world problems in a wide range of area such as environment, medicine and food. In the practical class, students will design and engineer a recombinant DNA construct from which a protein will be expressed and purified to learn the process of protein production from a gene. A recombinant DNA construct containing green florescent protein (GFP) gene will also be engineered and expressed for visualization of the gene product, GFP protein inside living cells under florescent microscope.

Module 3: Bioinformatics

Recent technological advance in high-throughput techniques in data generation and analysis such as entire genome sequence of different organisms provides rich sources of data for research. The store of data is largely held in freely available database softwares with public access. Students need a basic knowledge of bioinformatics to perform comparative analysis of genes and genome to identify candidate genes for genetic engineering applications. Bioinformatic tools are also important in data analysis.

This module is a design and development module which provides students an understanding of the use of bioinformatics softwares and web tools in data analysis and candidate gene identification. The acquired skills can be applied in design and development of research project. A series of exercise will be developed to led students through the basics of research paper retrieval using PubMed, sequence alignments using Basic Local Alignment Search Tool (BLAST) and translation using ExPASy. Students will then be able to perform computational analysis of a new candidate gene by drawing on information that can be retrieved from various bioinformatics databases.

Module 4: Computational Modeling

Synthetic biology focus on design and build artificial biological systems that do not naturally exist in the world through molecular biology and engineering approaches. Computational modeling has been used to provide quantitative data to analyse predicted behaviour of the new biological system and to identify desirable construct circuits design.

This module is a development module which allows students to build computational modeling concepts to predict behaviours of biological systems. Students will modeling the effect of different inducer isopropyl- β -D-1-thiogalactopyranoside (IPTG) concentrations on growth dynamics of *E.coli* BL21 carrying recombinant DNA construct in Module 2. In this study, growth experiment will be performed to obtain the growth curve for the effect of different IPTG concentration on the *E.coli* strain. The collected (O.D._{600nm}) data will be used as input data to generate growth predictions using computational modeling.

The integration of four modules transcends disciplinary boundaries and engage students with scientific inquiry, engineering design and new biological system development.

Interdisciplinary STEM Project

The second phase of the programme allows students to work on authentic research that is integrated within the curriculum and at the cutting edge of technology. It is aimed to encouraged students to design a synthetic biology system by building upon what they have learned in the curriculum. Projectbased learning is a student-centered pedagogy that students have the opportunity to collaborate as a team and engage with vigorous problem that have not been contrived. The team will participate in the International

		Genetically Engineered Machine (iGEM) competition which is the largest			
		clobal synthetic biology event in the world to get involved in synthetic biology			
		global synthetic blology event in the world to get involved in synthetic blology,			
		showcase their innovations and share their ideas and experiences with global			
		peers of synthetic biology community.			
		To engage in an authentic research to address a real-world problem, students			
		must attempt to build capacity to infuse creativity, innovation, collaboration			
		and critical thinking and using interdisciplinary knowledges and advanced			
		technology such as make use of three dimensional (3D) printing technology in			
		an independently designed project. They also need to reach out to stakeholders			
		from diverse communities to collect their points of view to reshape their project			
		idea to make greater positive impacts to the community. Such learning			
		experience not only motivate and sustain students' passion and engagement in			
		synthetic biology and STEM-related field but also show true mastery of learned			
		knowledge and skills in modules 1 to modules 4. In the end, students will be			
		instilled with the core value of creativity innovation high-order thinking			
		asymptotical collaboration offert and excellence the transferrable skills			
		communication, collaboration, effort and excellence, the transferrable skills			
		Learning Experiences Revand Classroom to Nuture STFM Talents			
		Learning Experiences Beyond Classroom to Nuture STEM Talents			
		The new STEM project-based learning programme aims to nurture global			
		STEM leaders. In this regard, collaboration with other institutions or industry			
		sectors will be developed to provide a platform to connect students with STEM			
		professionals and cultivate them to be future STEM talents. Professors from			
		institutions and entrepreneurs from STEM industries will be invited to visit our			
		school to share about recent advance in their research innovations, their past			
		life challenges and career prospects which could inspire our students to pursuit			
		synthetic biology or STEM-related field for their further study and career			
		aspiration.			
1.3	Alignment with	The first major concerns in our School Development Plan $(2019/20 - 2021/22)$			
	school-based /	is to enhance teaching and learning to equip students with knowledge and			
	students' needs	competence in STEM education. The new programme enriches STEM			
		curriculum in the field of synthetic biology with interdisciplinary modules and			
		project-based learning to inspire and sustain students' interest, build and			
		strengthen knowledge and competence in the field of synthetic biology and			
		other STEM-related field which align with school-based and students' needs.			

2. Project Feasibility

2.1	Key concept (s) /	The rationale of the project comes from suggestions mentioned in the 'Report			
	rationale(s) of the	on Promotion of STEM Education – Unleashing Potential in Innovation'. The			
	project	key concepts include: (i) renewing the curricula of the Science, Technology and			
		Mathematics Education KLAs; (2) enriching learning activities for students;			
		(3) providing learning and teaching resources.			
		Our enriched interdisciplinary STEM curriculum in synthetic biology will be			
		implemented in three cohorts of students. STEM-related subject teachers and			
		350 G7 to G9 students will be the first cohort to learn module 1 to module 3 of			
		the STEM curriculum to build knowledge and skills in the field of synthetic			
		biology, 60 G10 to G11 students studying at New Senior Secondary (NSS)			
		curriculum in Biology will be the second cohort to consolidate and apply			
		previous knowledges learned in module 1 to module 3 to engage in an			
		interdisciplinary STEM project by constructing a new biological system. 20 G8			
		to G9 students in school-based pull-out programme of synthetic biology, who			
		are selected by their good academic performance, STEM talents and skills will			

		be the third cohort to learn and apply knowledge in module 1 to module 4 in an
		interdisciplinary STEM project by constructing a new biological system and
		participate in iGEM competition. All primary 6 students from our affiliated
		primary school will also be invited to experience molecular biology activities
		in the lab.
2.2	Applicant's	School Department Head of Science and Mathematics and Biology Panel
	experience/	histochnology and synthetic hislogy since 2012 montoring STEM projects in
	experience/	vorious national and intermational science project compatitions including Using
	for project	Various national and international science project competitions including Hong
	implomentation	iGEM 2010 competition and participate in a funded OEE project to build up
	implementation	STEM advantion unit: Mixed Beality (MB) sourceware in Biology teaching in
		silehoration with tertiary institutions
		Five STEM related subject teachers including a Department Head of IDDD a
		STEM appreliated subject teachers including a Department field of IBDF, a
		have rich experiences in teaching melacular hielegy and its related techniques
		such as molecular cloning and sel electrophoresis. They also have experiences
		in montoring STEM projects
		A Laboratory Technician has rich experiences in preparing laboratory apparatus
		and equipments for the lab
		A Mathematic teacher specialized in computational modeling will be involved
		in curriculum design and implementation and involved in mentoring STFM
		project.
2.3	Principal's and	A preparation committee will set up to coordinate, implement and monitor the
	teachers'	progress of the scheme within the project period. The committee members
	involvement	include Principal, Department Head of Science and Mathematics, Biology
	and their roles	Panel Head, Department Head of IBDP, Integrated Science Panel Head, STEM
		coordinator, Biology teachers and a Mathematics teacher. The Principal will
		monitor the progress of the scheme and provide support by allocating
		manpower resources and facilitating class period arrangements. All
		participated teachers will involve in the design and implementation of the
		curriculum, evaluation of the effectiveness of the project and dissemination of
		experiences and students learning outcomes.
2.5	Roles of	Dr. Lo Sze Chung is an Associate Professor of School of Biological Science,
	collaborator(s)	The University of Hong Kong. His research expertise includes plant molecular
	(if applicable)	biology, plant secondary metabolism and metabolic engineering. He is a
		collaborator of the project to give academic advices and technical supports to
		facilitate the development of STEM curriculum and experiment protocols.
		Dr. Fung King Tat is a Lecturer of Department of Linguistics and Modern
		Languages, The Chinese University of Hong Kong. He is specialized in
		Content and Language Integrated Learning (CLIL). He is a consultant of the
		project to give advices in the design and data analysis of surveys, assessments
		and progress evaluations which are useful tools to monitor the implementation
		of the project, evaluate learning outcomes of students and impact and
		effectiveness of the project.

2.6 Implementation timeline

Implementation period	Project activities			
(MM/YYYY)				
10/2021 - 3/2022	- Purchasing relevant laboratory equipments and materials.			
	- Recruitment of a project assistant.			
	- Conduct meetings to review and enrich current STEM-related learning			
	contents, design new curriculum, learning outcome indicators and student			
	assessment tools to measure effectiveness of developed curriculum.			
<mark>4/2022 – 9/2022</mark>	- Prepare learning materials of curriculum and implement different learning			
	activities in S1 to S4.			
10/2022 - 2/2023	- Conduct data analysis and evaluate the effectiveness of curriculum for			
	refinement.			
<mark>3/2023 - 8/2023</mark>	- Refine STEM curriculum and implement different learning activities in S1 to			
	S5.			
	- Evaluation of the effectiveness of developed programme.			
	- iGEM team recruitment and project idea brainstorming.			
3/2023 - 12/2023	- iGEM project planning and execution.			
	- Project collaboration with other iGEM team.			
	- Conduct iGEM outreach activities.			
	- Project presentation in school and iGEM conference.			
	- Attend iGEM 2023 competition that will be held in France in late October.			
<u>12/2023 - 9/2024</u>	- Hold sharing session in school to showcase students' learning outcomes and			
	reflections.			
	- Organize teacher professional development workshops to share experience in			
	planning and implementing the new program and showcase emerging science			
	and technology field.			
	- All curriculum contents including lecture notes and problem sets will be			
	uploaded to the online platform for free public access.			

2.7 Details of project activities Student activity

Student activity				
Activity name	Content	Number of sessions and duration	Teachers' involvement and/or hired personnel	Expected learning outcomes
Synthetic Biology and Innovation	The following topics and contents will be integrated into learning curriculum of STEM-related subject in S1- S4: S1: Overview of synthetic biology – An introduction of synthetic biology including its innovation and application will be introduced. The structure and replication of DNA, chromosome organization and concept of central dogma of molecular biology will be integrated in	 S1: 2 sessions, 1 hour for each session. S2: 4 sessions, 1 hour for each session. S3: 4 sessions, 1 hour for 	To be taught by school teachers with relevant knowledge and experience.	The long-term goal of this project is to design, develop and implement interdisciplinary project-based STEM curriculum in the field of synthetic biology and evaluate its impact on student learning outcomes. The following are expected learning
	STEM learning curriculum of Integrated Science topic 'Heredity and variation'. Students will be able to understand the background of synthetic biology and how the	session. S4: Sessions,		from this module. Students will be able to: - appreciate synthetic biology is

	genetic coding system works.	1 hour for		advancing science
	S2: Basic techniques of	each		and technology
	molecular biology	session.		frontiers
	- Fundamental principles and			contributing to
	techniques of molecular biology			solving real-world
	will be introduced in school-			problems in diverse
	based curriculum to stimulate			fields.
	students' learning interest and			- explain the theory
	motivation and lay foundation for			and practice of
	further study of related topics in			molecular biology
	S3. Students will perform the			field.
	following hands-on experiments:			- demonstrate their
	bacterial DNA extraction,			skills and ability to
	restriction enzyme digestion and			conduct different
	DNA gel electrophoresis.			techniques of
	S3: Basic techniques of			molecular biology.
	molecular biology			- direct related
	Fundamental principles and			concept in molecular
	techniques of molecular biology			biology with latest
	will be introduced in learning			laboratory
	curriculum of Cambridge IGCSE			techniques.
	Biology topic Biotechnology			
	and genetic engineering'.			
	Students will perform the			
	following hands-on experiments:			
	polymerase chain reaction (PCR)			
	and gel purification.			
	S4: Advance techniques of			
	molecular biology			
	Fundamental principles of			
	recombinant protein expression			
	will be introduced and hands-on			
	induction and protein col			
	algetrophoresis will be			
	performed			
	Such vortically integrated			
	such vertically integrated			
	students to develop hands on			
	skills from basic molecular			
	biology learned in \$1 and \$2 to a			
	more advanced level learned in			
	S3 and S4.			
Genetic	The following contents will be	S2:	To be taught by	The followings are
Engineering	integrated into learning	2 sessions	school teachers	the learning
2	curriculum of STEM-related	1 hour for	with relevant	outcomes of this
	subject in S2- S3 to consolidate	each	knowledge and	module. Students
	the learned concepts in synthetic	session.	experience.	will be able to:
	biology and innovation:		1	- use systematic
	S2: Plasmid analysis by basic	S3:		reasoning and
	molecular biology techniques	2 session.		critical approach to
	S3: Visualization of protein with	1 hour for		record and analyse
	green fluorescent protein (GFP)	each		data.
	tag in living cells under florescent	session.		- understand green
	microscopy will be used to			florescent protein

	demonstrate the use of GFP as an	S4:		(GFP) serves as an
	important reporter for monitoring	4 sessions.		invaluable tool in
	gene expression and protein	1 hour for		monitoring gene
	localization	each		expression
		session		- integrate previous
	The following contents will be	Some of		knowledge and
	integrated into learning	the tacks		laboratory skills to
	aurrigulum of Piology subject in	will be		build a new DNA
	S4 and S5 to link laboratory	applated		ound a new DNA
	exercises in S2 and S2 that	offer		construct for
	exercises III S2 and S5 that			subsequent protein
	Introduce students to Important	lessons.		expression.
	recombinant DNA and protein	55.2		- gain experience of
	expression techniques to create	55: 5 accessions 1		intendicciplinery
	new biological systems which	sessions, 1		Interdisciplinary
	could be visualized under	nour for		STEM research
	florescence microscope and	each .		project.
	verified by successful	session.		
	recombinant protein expression.	Some of		
	54: Recombinant DNA construct	the tasks		
	making	will be		
	Engineering of a recombinant	completed		
	DNA construct with GFP reporter	after		
	gene will be made and its	lessons.		
	visualization under florescent			
	microscope will be performed for			
	verification of gene expression.			
	GFP signal will be observed if the			
	recombinant DNA construct is			
	successfully made.			
	S5: Recombinant protein			
	overexpression			
	Recombinant protein			
	overexpressing recombinant			
	DNA construct made in S4 will be			
	constructed to further verify			
	recombinant DNA construction.			
	S2 and S3 contents are vertically			
	integrated into learning			
	curriculum of S4 and S5.			
	Important synthetic biology skills			
	learned in S2 and S3,			
	recombinant DNA and protein			
	expression techniques allow S4			
	and S5 students to design and			
	create new biological systems to			
	solve real-world problems.			
	New S4 and S5 learning contents			
	will be integrated in New Senior			
	Secondary Biology Curriculum			
	compulsory part topics 'Basic			
	genetics', 'Molecular genetics'			
	and 'Biotechnology' and elective			
	part topic 'Biotechnology'.			
Bioinformatics	The following topics and contents	S1: 2	To be taught by	The followings are
	will be integrated into learning	sessions, 1	school teachers	expected learning

	curriculum of STFM_related	hour for	with relevant	outcomes resulting
	subject in S1- S3.	each	knowledge and	from this module
	S1: To consolidate the concept of	session	experience	Students will be able
	genetic coding system students	50551011.	experience.	to.
	will work on analysis of	\$2.2		- access and analyse
	functional genes that are	sessions 1		the data using
	available in organism genomes	hour for		bioinformatic tools
	The following database and	nour ior		-nerform
	software will be introduced:	cacii		-periorni computational
	BubMad saguanaa alignmanta	50551011.		computational
	Fublice, sequence angliments	52.2		analysis to identify a
	Sourch Tool (DLAST) and	33.2		for future study
	translation using ExPASy They	bour for		for future study.
	should be able to identify a	nour for		
	should be able to identify a	each		
	DNA generation a genomic	session.		
	DNA sequence, transcript	G4 9 G5		
	sequence and translated product	S4 & S5:		
	Using bioinformatic tools.	2 sessions,		
	S2: Bioinformatic tools to	I hour for		
	identify restriction enzyme sites	each .		
	within DNA sequences and	session.		
	recombinant plasmid map will be			
	introduced for plasmid analysis			
	and subsequent experimental			
	design.			
	S3: Bioinformatic tools to design			
	primers in PCR and study protein			
	three-dimensional structure will			
	be introduced.			
	S4&S5: Use bioinformatic tools			
	learned in S1 to S3 to perform			
	computation analysis of a new			
	candidate gene and give			
	presentation about cloning			
	strategies in the class.			
Computational	The following topics and contents	3 sessions,	To be taught by	The followings are
modeling	will be integrated into the first	1 hour for	school teacher	the expected
	year of learning curriculum of	each	with relevant	outcomes of this
	STEM pull-out program in	session.	knowledge and	modules: Students
	synthetic biology for S2 and S3	Some of	experience.	will be able to:
	students:	the tasks		- understand how
	1. Introduction to growth	will be		mathematical and
	dynamics	completed		computer tools help
	The emphasis will be on the use	after		in modelling and
	of Hill Equation to model the	lessons.		simulation of
	grow curve of bacteria.			behaviors of new
	2. Introduction to mathematical			biological systems.
	modelling			- formulate
	The least square method of			modelling equations
	parameter estimation will be			for new biological
	introduced.			systems in
	3. Introduction to computational			interdisciplinary
	modelling			STEM project.
	4. Basıc Matlab programming			
	skills which allow students to fit			

	experimental data in a given			
	model			
Interdisciplinary	The learning curriculum of S4 to	10 sessions	To be taught by	The following are
STEM project	S5 will be integrated into the first	in two	school teachers	expected learning
STEM project	year of learning curriculum of	vears 1	with relevant	outcomes resulting
	STEM pull-out program in	hour for	knowledge and	from this activity
	synthetic biology for S2 and S3	each	experience	Students will be able
	students to equip students with	session	experience.	to.
	knowledge and skills required in	Some tasks		- show their passion
	authentic research project design	will be		and interest
	and execution in the second year	completed		knowledge and
	Students will be able to use	after		skills in the field of
	bioinformatic tools to design and	school		synthetic biology
	synthetic biology skills to	Senoon.		- design analyse and
	engineer a recombinant DNA			evaluate a new
	construct with GFP reporter gene			biological system
	and subsequent recombinant			building upon what
	protein expression. The			have been learned in
	integrated S4 to S5 learning			the curriculum to
	curriculum build a strong			real-world
	foundation for learning so that			applications.
	students can learn at a faster pace			- demonstrate ability
	and foster their learning interests			to collect and
	and needs. In addition, coherent			analyse data for
	language of synthetic biology for			dissemination.
	expressing the structure and			- develop reasoning
	function of genetic design,			skills and high-order
	Synthetic Biology Open			thinking skills to
	Language (SBOL) Visual and			tackle problems.
	Biobrick Standard Assembly will			- demonstrate ability
	also be integrated into the first			to translate several
	year of STEM curriculum of pull-			skills such as
	out program. In the second year,			collaboration, public
	the team will participate in iGEM			speaking, research
	2023 competition held in France			skills and writing
	in late October to showcase their			skills into other
	innovations and connect with			areas.
	global peers in synthetic biology			- develop different
	community.			generic skills which
				are essential for life-
				long learning.

a. Teacher training

Activity	Content	Number	Hired personnel	Expected learning
name		of		outcomes
		sessions		
		and		
		duration		
Professional	Professional development	2	STEM-related	Teachers should be
development	workshops will be arranged for	sessions,	subject teachers	able to
workshops	STEM-related subject teachers.	3 hours	will share	- understand the
	The contents include:	for each	experiences and	designs of
	1. Curriculum planning of STEM	session	provide teachers	curriculum
	project-based learning.		with necessary	planning in STEM
	2. Implementation and evaluation		information and	project-based

	of learning activities.		training.	learning, the
	3. Lab equipments demonstration			implementation and
	4. Teacher experience sharing			effectiveness of
				learning activities.
				- recognize
				synthetic biology as
				the emerging and
				cutting-edge
				development in
				STEM education
				- demonstrate basic
				knowledge and
				skills in relevant
				lab equipments.
Online	Video lessons about different	4	A project assistant	Teachers should be
learning	aspects of basic molecular biology	sessions,	will assist in	able to understand
resources	techniques will be made.	15 min for	developing online	knowledge and
development		each	learning materials	skills in basic
		session	and put them on	molecular biology
			the web.	techniques.

b. Equipment (including installation of new fixtures or facilities)

	Details of equipment to be procured	Contribution to fulfilment of the project aim(s) and if
1	Low temperature freezer (80°C)	Long term storage of nucleic acids proteins besterial
1	Low temperature neezer (-80 C)	colls, plant tissues and primers
2	Elementer microscome with comerce	Ear loaming and taaching activities in the detection of
2	riorescence microscope with camera	CED in hastorial calls and used in research projects
2	T1	GFP in bacierial cells and used in research projects.
3	Inermocycler	For learning and teaching activities in polymerase
4	77. 11.	chain reaction (PCR) and used in research projects.
4	Trans-Illuminator	For learning and teaching activities in DNA gel
		purification and used in research projects.
5	Benchtop autoclave	Sterilization of glasswares, Eppendorf tubes, culture
		medium for all experiments.
6	Water purification system	Provide purified water for all experiments.
7	Heat blocks	Provide stable temperatures for experiments involving
		restriction enzyme digestions and protein
		denaturation.
8	Refrigerated microcentrifuge	Centrifugation of DNA and proteins at low
		temperature.
9	Refrigerated 50 ml tube centrifuge	Centrifugation of recombinant proteins for
		purification.
10	Vortex mixer	Mix DNA samples in Eppendorf tube or falcon.
11	Nanodrop OneC Spectrophotometer	Optical density measurement of bacterial culture,
		nucleic acid and protein quantification.
12	Microplate reader	Enzyme assay and cell growth assay in 96-well plates.
13	Benchtop cooler	Maintain low temperature for temporary storage of
		enzymes, cells and reagents.
14	Bacteria growth incubator	Bacterial incubation
15	Ice- maker	Making ice for experiments.
16	Protein electrophoresis set	Protein electrophoresis experiment.
17	Ultrasonic homogenizer	Bacterial cell lysis for protein purification.

c. Construction works

Details of the construction works proposed	Contribution to fulfilment of the project aim(s) and	
	applicable, the expected utilization rate	

d. Features of the school-based curriculum to be developed

The goal of this project is to develop a school-based STEM programme in the field of synthetic biology integrated with new technological advances for interdisciplinary project-based learning in order to inspire students and sustain their interests in STEM-related field for further studies and career aspiration, consolidate STEM knowledge foundation and skills, enhance their generic skills essential for life-long learning, to promote STEM education in Hong Kong secondary schools, to enhance professional capacity of teachers in teaching science and technology and to disseminate experiences for the reference of other schools in the design and implementation of a new programme.

An interdisciplinary programme will be developed and integrated into STEM-related learning contents of S1 to S5 after holistic curriculum review. The programme includes an interdisciplinary curriculum with four modules to consolidate knowledge foundation in synthetic biology for S1 to S5 students and an interdisciplinary STEM project for pull-out programme students to work on authentic research by building upon what have been learned in the curriculum. The team will participate in the International Genetically Engineered Machine (iGEM) 2023 competition to showcase their innovations and share their ideas and experience with global peers of synthetic biology community.

e. Other activities

iGEM team students will engage in different outreach activities such as STEM expert interviews, school STEM activities, iGEM conferences and collaboration to solicit inputs from different stakeholders and share their idea and findings of authentic research. Such learning experience not only motivate and sustain students' passion and engagement in synthetic biology and STEM-related field but also show true mastery of learned knowledge and skills curriculum. In the end, students will be instilled with the core value of creativity, innovation, high-order thinking, communication, collaboration and effort, the transferrable skills that are essential in life-long learning to navigate a rapidly evolving society.

2.8 Budget

Total Grant Sought: HK\$ 1,995,300

Dudget	Breakdown for the budget items		Justifications	
Categories*	Item Amount			
		(HK\$)		
a. Staff	Project assistant (24 months including MPF) (HK\$ 14,500 x 24 x 1.05)	365, 400	The candidate should have a university degree in biological science or related disciplines. He/she will be responsible for: - Assist in preparing teaching materials and surveys design; - Prepare, disseminate, collect and enter data of evaluation documents; - Assists in laboratory preparation works and mentor student projects; - Arrange and involve in learning activities and teaching sharing session; - Photo taking and video recording of learning activities; - Compilation and documentation of teaching materials, evaluation documents and student projects; - Build an online learning platform	

			for resources development and dissemination.	
b. Service	Travel expenses for iGEM competition (10 students) (HK\$ 11,500 x 10)	115,000	iGEM competition is the world largest synthetic biology event for students to showcase their innovation and share their ideas and experience with global peers of synthetic biology community. It is one of the performance indicators to show students having a true mastery of learned knowledge and skills in the programme. Selected students should meet the following criteria: they must be 1) in G8 to G11; 2) in good academic and disciplinary standing; 3) fluent in the English language; 4) demonstrate passion and commitment to all learning activities in iGEM project.	
	Online platform construction and hosting	5,000	All learning resources will be put online for sharing.	
c. Equipment	Low temperature freezer	125,000	Long term storage of nucleic acids, proteins, bacterial cells, plant tissues and primers.	
	Florescence microscope with camera	300,000	For learning and teaching activities in the detection of GFP in bacterial cells and used in research projects.	
	Thermocycler	45,000	For learning and teaching activities in polymerase chain reaction (PCR) and used in research projects.	
	Trans-illuminator	9,000	For learning and teaching activities in DNA gel purification and used in research projects.	
	Benchtop Autoclave	110,000	Sterilization of glasswares, Eppendorf tubes, culture medium for all experiments.	
	Water purification system	48,500	Provide purified water for all experiments.	
	Heat block	14,000	Four heat blocks will be purchased to provide stable temperatures for experiments involving restriction enzyme digestions and protein denaturation.	
	Refrigerated microcentrifuge	61,569	Centrifugation of DNA and proteins at low temperature.	
	Refrigerated 50 ml tube centrifuge	7,433	Centrifugation of recombinant proteins for purification.	
	Vortex mixer 10,070		Five vortex mixers will be purchased to mix DNA samples in Eppendorf tube or falcon.	
	Nanodrop OneC spectrophotometer	143,997	Optical density measurement of bacterial culture, nucleic acid and protein quantification.	

	Microplate reader	224,311	Enzyme assay and cell growth assay in 96-well plates.
	Benchtop cooler	4,600	Four benchtop coolers will be purchased to maintain low temperature for temporary storage of enzymes, cells and reagents.
	Bacterial growth incubator	24,000	Bacterial incubation
	Ice-maker	15,360	Making ice for experiments.
	Protein electrophoresis set	128,000	Eight Protein electrophoresis sets will be purchased for eight group experiments.
	Ultrasonic homogenizer	16,000	Bacterial cell lysis for protein purification.
d. General expenses	PCR reagents	40,025	Used in PCR reactions for learning and teaching activities and research projects.
	Lab consumables items	30,000	Consumable items such as pipette tips, eppendorfs, falcons, petri dish, 96-well plates etc. need to be used in experiments of module 1 and 2 and research projects.
	General chemicals	50,000	Chemicals such as agarose, bacterial culture medium, organic solvents etc. need to be used in experiments of module 1 and 2 and research projects.
	DNA extraction and purification kit	35,000	For DNA extraction and purification in experiments of module 1 and 2 and research projects.
	Computational analysis software	5,000	For modelling of bacterial growth dynamic and research projects.
	Auditing	15,000	Audit fee.
	Printing for dissemination and evaluation	1,000	Printing of learning materials for dissemination and surveys for evaluation of effectiveness of the programme.
f. Contingency	A contingency provision	47,035	(b+c+d) x 3%
	Total Grant Sought (HK\$):	1,995,300	

Remark: Budget estimation of all items was prepared by requesting quotations from technology companies with item's function and size were taken into consideration. Product demonstrations were conducted for some of the items.

Procurement procedure set out by EDB would be strictly followed.

*

- (i) Applicants should refer to the <u>QEF Pricing Standards</u> in completing the above table. All staff recruitment and procurement of goods and services should be carried out on an open, fair and competitive basis. Budget categories not applicable to this application can be deleted.
- (ii) For applications involving school improvement works, a contingency provision of not more than 10% for carrying out works is considered acceptable.
- (iii) For projects lasting for more than one year, a contingency provision of not more than 3% of the total budget exclusive of staff cost and works expenditure (including the related contingency provision), if any, is considered acceptable.

3. Expected Project Outcomes

3.1	Deliverables / outcomes	 Learning and teaching materials Resource package e-deliverables*(<i>please specify</i>) Teaching materials and video lessons will be delivered via online platform. Others (<i>please specify</i>)
		*For e-deliverables to be hosted on HKEdCity, please liaise with HKEdCity at 2624 1000.
3.2	Positive impact on quality education/ the school's development	The aim of the project aligns with our school development plan. It aims to develop a school-based STEM programme in the field of synthetic biology integrated with new technological advances for interdisciplinary STEM project-based learning in order to inspire students and sustain their interests in STEM-related field for further studies and career aspiration, consolidate STEM knowledge foundation and skills, enhance their generic skills essential for life-long learning, to promote STEM education in Hong Kong secondary schools, to enhance professional capacity of teachers in teaching science and technology and to disseminate experiences for the reference of other schools in the design and implementation of a new programme.

3.3 Evaluation

Quantitative and qualitative measurements will be used to evaluate project effectiveness. For quantitative measurements, randomized pre-quiz and post-quiz research design will be employed to evaluate the effectiveness of integration of modules in enriched STEM curriculum. Students will be randomly divided into two groups. Students in both groups will do the pre-quiz. In the control group, students will receive conventional didactic teaching without integration of the related contents in STEM curriculum modules whereas students in intervention group will learn the same topic and related contents in STEM curriculum modules. Students in both groups will then do the post-quiz which is same as the pre-quiz to test their knowledge and understanding of the learned contents. Students in the control group will then learn the related contents in enriched STEM curriculum and do the post-quiz again. The difference between the mean academic scores of the pre-quiz and post-quiz after the intervention will be analyzed.

Questionnaires will also be given out to evaluate the effectiveness of integration of modules in terms of knowledge, skills, learning experience and integration of learning. Students will be asked to rate the following components using 5-point Likert scale ranging from 1 (strongly agree) to 5 (strongly disagree): class overall; understanding of class content; lab experience; lab skill competence; support for the students as an individual learner and apply what have been learned in the class in other situations.

For qualitative measurements, interviews, class observation and student performance assessments will be conducted. Satisfaction of the curriculum contents, project-based learning experience and professional development activities will be the key performance indicators of the project. The following aspects of project effectiveness will be evaluated:

1. The effectiveness of the school-based STEM programme in promoting STEM education (success criteria: 80% of teachers and students agree that the project helps the school to promote STEM education).

2. Enhance student interest in learning STEM through synthetic biology learning activities (success criteria: 80% of teachers and students agree that the project helps to arouse student learning interest in synthetic biology activities.

3. Enhance student creativity, high order thinking skills and collaboration through learning activities and project-based learning (success criteria: 80% of teachers and students agree that the project enhance students the related generic skills).

4. Enhance teacher professional capacity (success criteria: 80% of teachers agree that the project enhance their professional capacity in teaching science and technology and serves as a useful reference for them in the development of new curriculum).

3.4 Sustainability of the project

By the end of the project, committee members and involved teachers will hold regular review meetings to discuss how to refine and further develop school-based STEM education in synthetic biology to promote learning of students and meet the future needs. With experiences in the development of a new STEM curriculum, our school will design teaching and learning activities for other themes.

The maintenance fee and the purchase of new equipments and items in the teaching of synthetic biology in the future will be borne by the school. The school will continue to make good use of the facilities and equipments to conduct teaching and learning activities in order to enrich students' learning experience in the field after the completion of the project.

3.5 Dissemination

The school will organize professional development workshops for teachers and sharing session for students by the end of the project to showcase students learning outcomes and share experience in design and implementation of STEM learning activities.

The deliverables will be uploaded to the school webpage and online platform for teachers' reference. Good practices will be presented in national and international education seminar, workshop and conference.

Report submission schedule

Our school commits to submit reports in strict accordance with the following schedule:

Project Management		Financial Management		
(Should be submitted via the "Electronic Project Management System" (EPMS))		(Hard copy together with supporting documents should be submitted to the QEF Secretariat by mail or in person)		
Type of report and reporting period Report due on		Type of report and reporting period	Report due on	
Progress Report		Interim Financial Report		
01/10/2021 - 31/03/2022	30/04/2022	01/10/2021 - 31/03/2022	30/04/2022	
Progress Report		Interim Financial Report		
01/04/2022 - 30/09/2022	31/10/2022	01/04/2022 - 30/09/2022	31/10/2022	
Progress Report		Interim Financial Report		
01/10/2022 - 31/03/2023	30/04/2023	01/10/2022 - 31/03/2023	30/04/2023	
Progress Report		Interim Financial Report		
01/04/2023 - 30/09/2023	31/10/2023	01/04/2023 - 30/09/2023	31/10/2023	
Progress Report		Interim Financial Report		
01/10/2023 - 31/03/2024	30/04/2024	01/10/2023 - 31/03/2024	30/04/2024	
Final Report		Final Financial Report		
01/10/2021 - 30/09/2024	31/12/2024	01/04/2024 - 30/09/2024	31/12/2024	

Reference

1. Savery, J. R. (2006). Overview of Problem-based Learning: Definitions and Distinctions. Interdisciplinary Journal of Problem-based Learning, 1(1).

2. Khaliq, S., Alam, M.T., Mushtaq, M (2014). An Experimental Study to Investigate the Effectiveness of Project-Based Learning (PBL) for Teaching Science at Elementary Level. International Journal of Academic Research in Progressive Education and Development, 4(1).

3. Kunal Ahuja and Amit Rawat (2019). Synthetic Biology Market Statistics 2019-2025 Share Forecasts. <u>https://www.gminsights.com/industry-analysis/synthetic-biology-market</u> (retrieved on 5 March 2020)

Category	Item Description	No. of	Total Cost	Proposed Plan for
		Units	(HK\$)	Deployment
Lab	Low temperature freezer	1	125,000	Items will be used and
equipments	-			maintained by the school
	Florescence microscope	1	300,000	for teaching and research
	with camera			purpose
	Thermocycler		45,000	
	Trans-illuminator		9,000	
	Benchtop Autoclave		110,000	
	Water purification system		48,500	
	Heat block		14,000	
	Refrigerated		61,569	
	microcentrifuge			
	Refrigerated 50 ml tube		7,433	
	centrifuge			
	Vortex mixer		10,070	
	Nanodrop OneC		143,997	
	spectrophotometer			
	Microplate reader		224,311	
	Benchtop cooler		4,600	
	Bacterial growth incubator		24,000	
	Ice-maker		15,360	
	Protein electrophoresis set		128,000]
	Ultrasonic homogenizer		16,000	
Computer	Computational analysis		5,000]
software	software			

Asset Usage Plan

Annex I

Declaration

I agree and commit to participate actively in project promotion, publicity and dissemination activities in respect of the project.

Yours sincerely, Dr. Yu Ka Yin P.I.C. of the project G.T. (Ellen Yeung) College